3.3.40 \(\int \frac {(b x^2+c x^4)^{3/2}}{x} \, dx\) [240]

Optimal. Leaf size=88 \[ \frac {b \left (b+2 c x^2\right ) \sqrt {b x^2+c x^4}}{16 c}+\frac {1}{6} \left (b x^2+c x^4\right )^{3/2}-\frac {b^3 \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{16 c^{3/2}} \]

[Out]

1/6*(c*x^4+b*x^2)^(3/2)-1/16*b^3*arctanh(x^2*c^(1/2)/(c*x^4+b*x^2)^(1/2))/c^(3/2)+1/16*b*(2*c*x^2+b)*(c*x^4+b*
x^2)^(1/2)/c

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {2043, 678, 626, 634, 212} \begin {gather*} -\frac {b^3 \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{16 c^{3/2}}+\frac {b \left (b+2 c x^2\right ) \sqrt {b x^2+c x^4}}{16 c}+\frac {1}{6} \left (b x^2+c x^4\right )^{3/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*x^2 + c*x^4)^(3/2)/x,x]

[Out]

(b*(b + 2*c*x^2)*Sqrt[b*x^2 + c*x^4])/(16*c) + (b*x^2 + c*x^4)^(3/2)/6 - (b^3*ArcTanh[(Sqrt[c]*x^2)/Sqrt[b*x^2
 + c*x^4]])/(16*c^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 626

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1
))), x] - Dist[p*((b^2 - 4*a*c)/(2*c*(2*p + 1))), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 634

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 2043

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)
/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[
n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]

Rubi steps

\begin {align*} \int \frac {\left (b x^2+c x^4\right )^{3/2}}{x} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {\left (b x+c x^2\right )^{3/2}}{x} \, dx,x,x^2\right )\\ &=\frac {1}{6} \left (b x^2+c x^4\right )^{3/2}+\frac {1}{4} b \text {Subst}\left (\int \sqrt {b x+c x^2} \, dx,x,x^2\right )\\ &=\frac {b \left (b+2 c x^2\right ) \sqrt {b x^2+c x^4}}{16 c}+\frac {1}{6} \left (b x^2+c x^4\right )^{3/2}-\frac {b^3 \text {Subst}\left (\int \frac {1}{\sqrt {b x+c x^2}} \, dx,x,x^2\right )}{32 c}\\ &=\frac {b \left (b+2 c x^2\right ) \sqrt {b x^2+c x^4}}{16 c}+\frac {1}{6} \left (b x^2+c x^4\right )^{3/2}-\frac {b^3 \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x^2}{\sqrt {b x^2+c x^4}}\right )}{16 c}\\ &=\frac {b \left (b+2 c x^2\right ) \sqrt {b x^2+c x^4}}{16 c}+\frac {1}{6} \left (b x^2+c x^4\right )^{3/2}-\frac {b^3 \tanh ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {b x^2+c x^4}}\right )}{16 c^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 102, normalized size = 1.16 \begin {gather*} \frac {x \sqrt {b+c x^2} \left (\sqrt {c} x \sqrt {b+c x^2} \left (3 b^2+14 b c x^2+8 c^2 x^4\right )+3 b^3 \log \left (-\sqrt {c} x+\sqrt {b+c x^2}\right )\right )}{48 c^{3/2} \sqrt {x^2 \left (b+c x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*x^2 + c*x^4)^(3/2)/x,x]

[Out]

(x*Sqrt[b + c*x^2]*(Sqrt[c]*x*Sqrt[b + c*x^2]*(3*b^2 + 14*b*c*x^2 + 8*c^2*x^4) + 3*b^3*Log[-(Sqrt[c]*x) + Sqrt
[b + c*x^2]]))/(48*c^(3/2)*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 102, normalized size = 1.16

method result size
risch \(\frac {\left (8 c^{2} x^{4}+14 b c \,x^{2}+3 b^{2}\right ) \sqrt {x^{2} \left (c \,x^{2}+b \right )}}{48 c}-\frac {b^{3} \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+b}\right ) \sqrt {x^{2} \left (c \,x^{2}+b \right )}}{16 c^{\frac {3}{2}} x \sqrt {c \,x^{2}+b}}\) \(90\)
default \(\frac {\left (c \,x^{4}+b \,x^{2}\right )^{\frac {3}{2}} \left (8 x \left (c \,x^{2}+b \right )^{\frac {5}{2}} \sqrt {c}-2 \sqrt {c}\, \left (c \,x^{2}+b \right )^{\frac {3}{2}} b x -3 \sqrt {c}\, \sqrt {c \,x^{2}+b}\, b^{2} x -3 \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+b}\right ) b^{3}\right )}{48 x^{3} \left (c \,x^{2}+b \right )^{\frac {3}{2}} c^{\frac {3}{2}}}\) \(102\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2)^(3/2)/x,x,method=_RETURNVERBOSE)

[Out]

1/48*(c*x^4+b*x^2)^(3/2)*(8*x*(c*x^2+b)^(5/2)*c^(1/2)-2*c^(1/2)*(c*x^2+b)^(3/2)*b*x-3*c^(1/2)*(c*x^2+b)^(1/2)*
b^2*x-3*ln(x*c^(1/2)+(c*x^2+b)^(1/2))*b^3)/x^3/(c*x^2+b)^(3/2)/c^(3/2)

________________________________________________________________________________________

Maxima [A]
time = 0.31, size = 91, normalized size = 1.03 \begin {gather*} \frac {1}{8} \, \sqrt {c x^{4} + b x^{2}} b x^{2} - \frac {b^{3} \log \left (2 \, c x^{2} + b + 2 \, \sqrt {c x^{4} + b x^{2}} \sqrt {c}\right )}{32 \, c^{\frac {3}{2}}} + \frac {1}{6} \, {\left (c x^{4} + b x^{2}\right )}^{\frac {3}{2}} + \frac {\sqrt {c x^{4} + b x^{2}} b^{2}}{16 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(3/2)/x,x, algorithm="maxima")

[Out]

1/8*sqrt(c*x^4 + b*x^2)*b*x^2 - 1/32*b^3*log(2*c*x^2 + b + 2*sqrt(c*x^4 + b*x^2)*sqrt(c))/c^(3/2) + 1/6*(c*x^4
 + b*x^2)^(3/2) + 1/16*sqrt(c*x^4 + b*x^2)*b^2/c

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 166, normalized size = 1.89 \begin {gather*} \left [\frac {3 \, b^{3} \sqrt {c} \log \left (-2 \, c x^{2} - b + 2 \, \sqrt {c x^{4} + b x^{2}} \sqrt {c}\right ) + 2 \, {\left (8 \, c^{3} x^{4} + 14 \, b c^{2} x^{2} + 3 \, b^{2} c\right )} \sqrt {c x^{4} + b x^{2}}}{96 \, c^{2}}, \frac {3 \, b^{3} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2}} \sqrt {-c}}{c x^{2} + b}\right ) + {\left (8 \, c^{3} x^{4} + 14 \, b c^{2} x^{2} + 3 \, b^{2} c\right )} \sqrt {c x^{4} + b x^{2}}}{48 \, c^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(3/2)/x,x, algorithm="fricas")

[Out]

[1/96*(3*b^3*sqrt(c)*log(-2*c*x^2 - b + 2*sqrt(c*x^4 + b*x^2)*sqrt(c)) + 2*(8*c^3*x^4 + 14*b*c^2*x^2 + 3*b^2*c
)*sqrt(c*x^4 + b*x^2))/c^2, 1/48*(3*b^3*sqrt(-c)*arctan(sqrt(c*x^4 + b*x^2)*sqrt(-c)/(c*x^2 + b)) + (8*c^3*x^4
 + 14*b*c^2*x^2 + 3*b^2*c)*sqrt(c*x^4 + b*x^2))/c^2]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (x^{2} \left (b + c x^{2}\right )\right )^{\frac {3}{2}}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2)**(3/2)/x,x)

[Out]

Integral((x**2*(b + c*x**2))**(3/2)/x, x)

________________________________________________________________________________________

Giac [A]
time = 3.71, size = 84, normalized size = 0.95 \begin {gather*} \frac {b^{3} \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2} + b} \right |}\right ) \mathrm {sgn}\left (x\right )}{16 \, c^{\frac {3}{2}}} - \frac {b^{3} \log \left ({\left | b \right |}\right ) \mathrm {sgn}\left (x\right )}{32 \, c^{\frac {3}{2}}} + \frac {1}{48} \, {\left (2 \, {\left (4 \, c x^{2} \mathrm {sgn}\left (x\right ) + 7 \, b \mathrm {sgn}\left (x\right )\right )} x^{2} + \frac {3 \, b^{2} \mathrm {sgn}\left (x\right )}{c}\right )} \sqrt {c x^{2} + b} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2)^(3/2)/x,x, algorithm="giac")

[Out]

1/16*b^3*log(abs(-sqrt(c)*x + sqrt(c*x^2 + b)))*sgn(x)/c^(3/2) - 1/32*b^3*log(abs(b))*sgn(x)/c^(3/2) + 1/48*(2
*(4*c*x^2*sgn(x) + 7*b*sgn(x))*x^2 + 3*b^2*sgn(x)/c)*sqrt(c*x^2 + b)*x

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,x^4+b\,x^2\right )}^{3/2}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2 + c*x^4)^(3/2)/x,x)

[Out]

int((b*x^2 + c*x^4)^(3/2)/x, x)

________________________________________________________________________________________